

Single Phase Passive Rectification
Versus Active Rectification Applied
to High Power Stirling Engines

NASA Technical Reports Server
(NTRS)

DOWNLOAD

Single Phase Passive Rectification Versus Active Rectification Applied to High Power Stirling Engines

By -

BiblioGov. Paperback. Book Condition: New. This item is printed on demand. Paperback. 22 pages. Dimensions: 9.7in. x 7.4in. x 0.1in. Stirling engine converters are being considered as potential candidates for high power energy conversion systems required by future NASA explorations missions. These types of engines typically contain two major moving parts, the displacer and the piston, in which a linear alternator is attached to the piston to produce a single phase sinusoidal waveform at a specific electric frequency. Since all Stirling engines perform at low electrical frequencies (less or equal to 100 Hz), space explorations missions that will employ these engines will be required to use DC power management and distribution (PMAD) system instead of an AC PMAD system to save on space and weight. Therefore, to supply such DC power an AC to DC converter is connected to the Stirling engine. There are two types of AC to DC converters that can be employed, a passive full bridge diode rectifier and an active switching full bridge rectifier. Due to the inherent line inductance of the Stirling Engine-Linear Alternator (SE-LA), their sinusoidal voltage and current will be phase shifted producing a power factor below 1. In order to keep power the...

READ ONLINE

[4.56 MB]

Reviews

The most effective book i at any time read through. It is definitely simplistic but surprises in the fifty percent from the ebook. Your daily life span will probably be enhance once you full reading this ebook.

-- **Jules Dietrich V**

It is really an awesome ebook that I have ever read. It typically fails to expense a lot of. I am very easily can get a enjoyment of studying a written ebook.

-- **Delphia Fay**